
1

S I G N A L

C U L T U R E

C O O K

B O O K

VOL. 2

Edited by Jason Bernagozzi

E-Book Designed by Brian Murphy

2

Edited by Jason Bernagozzi
Introduction by Jason Bernagozzi

E-Book Designed by Brian Murphy

All Rights Reserved
Copyright © 2019 Signal Culture

Owego, New York
http://signalculture.org/

ISBN:

S I G N A L

C U L T U R E

C O O K

B O O K

VOL. 2

http://signalculture.org/

201

Browser Blowup: Explode Web Pages
Containing Third-Party Trackers

Joelle Dietrick, Gretta Louw, Owen Mundy

 This chapter will discuss browser extensions and online tracking. We’ll speak to both
common and more experimental implementations of extensions, and show readers how to
build their own cross browser extension that explodes web pages with hidden third-party
data trackers on them.

Introduction

What are browser extensions?
 Browser extensions are software that add features to a web browser. The functionality
they add can be useful, like the Wayback Machine extension that shows you what a web page
looked like in the past, even if it was deleted, or Google Translate which changes text on a
web page into any language. Others are more whimsical, such as the Meow Met (2015)
extension created by Emily McAllister at the Metropolitan Museum of Art, which displays a
new random image from their collection that contains a cat whenever you open a new brows-
er window or tab1.6

 One of the most popular browser extensions on the Chrome Web Store is Adblock
which blocks annoying banner, popup, and video advertisements in real time2.7Ad blockers
are a subset of a larger group of “tracker blockers,” which prevent hidden online data trackers
from quantifying and monetizing everything from internet users’ most private searches and
communications to their shopping habits, interests, and intimate demographic details.

 While the vast majority of users are not aware of the extent to which they are being
tracked; think that they ‘have nothing to hide’ and therefore that tracking is not a concern; or
do not like being tracked but feel powerless to do anything about it,3 489a significant share are
actively resisting this mindset through tracker blockers. According to the website eMarketer,
the number of internet users in the U.S. who have an ad blocker enabled has doubled in the
last four years, from 15% in 2014 to a substantial 30%, or about 80 million people, projected
for 20185.10

1 Claire Voon, “Cat Art from the Met Museum Makes the Purrfect Browser Plug-in,” Hyperallergic, July 16, 2015,
accessed July 23, 2018. https://hyperallergic.com/222538/cat-art-from-the-met-museum-makes-the-purrfect-browser-plug-
in/
2 “Choosing the right filterlist,” Adblock Plus, Accessed July 23, 2018. https://adblockplus.org/en/getting_started#-
subscription
3 Mary Madden and Lee Rainie, “Americans’ Attitudes About Privacy, Security and Surveillance,” Pew Research
Center, May 20, 2015, Accessed July 23, 2018. http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-se-
curity-and-surveillance/
4 Joseph Turow, Michael Hennessey and Nora Draper, “The Tradeoff Fallacy: How Marketers Are Misrepresenting
American Consumers And Opening Them Up to Exploitation,” The Annenberg School for Communication at the University
of Pennsylvania, June 2015, Accessed July 23, 2018. https://www.asc.upenn.edu/sites/default/files/TradeoffFallacy_1.pdf
5 “US Ad Blocking User Penetration, 2014-2018 (% of internet users),” eMarketer, February 22, 2017, Accessed July
23, 2018. https://www.emarketer.com/Chart/US-Ad-Blocking-User-Penetration-2014-2018-of-internet-users/204561

https://archive.org/web/
https://translate.google.com/
https://chrome.google.com/webstore/detail/meow-met/annljkgbhnihbghkbfammlacnlfkdclp?hl=en
https://hyperallergic.com/222538/cat-art-from-the-met-museum-makes-the-purrfect-browser-plug-in/
https://hyperallergic.com/222538/cat-art-from-the-met-museum-makes-the-purrfect-browser-plug-in/
https://adblockplus.org/en/getting_started#subscription
https://adblockplus.org/en/getting_started#subscription
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
https://www.asc.upenn.edu/sites/default/files/TradeoffFallacy_1.pdf
https://www.emarketer.com/Chart/US-Ad-Blocking-User-Penetration-2014-2018-of-internet-users/204561

202

Joelle Dietrick, Gretta Louw, Owen Mundy

 Most ad and tracker blockers work by accessing the source code of a web page,
identifying content areas that are known to import third-party trackers or show
advertisements, and deleting that source code. This is possible because we can view the
content of web pages using the browser’s “view source” option. The view source option has
been available almost as long as web browsers have been in use and is an essential part of
what makes the internet “open.” With it, anyone can see how a web page is constructed, to
inspect or learn from others’ code, and improve the web. As Stack Overflow co-founder
Jeff Atwood explained on his popular blog Coding Horror, it is the “ultimate form of open
source” and an important reason for why the internet is so accessible today6.6Mark
Surman, the Executive Director of the Mozilla Foundation, argues for “view source” not
only as pragmatic, but instead, as fundamental to the transparency, openness, and
collaborative goals that underpin all of civil society7.7

 Thanks to the fact we have access to the source of web pages, there are more exper-
imental uses of browser extensions that challenge our notion of what is possible online.
Because browser extensions can access a web page’s source code, they can transform the
content of pages, modifying our experience while we search, work, or play online.

6 Jeff Atwood. “The Power of ‘View Source’,” Coding Horror (blog), August 17, 2006, Accessed July
23, 2018. https://blog.codinghorror.com/the-power-of-view-source/
7 Mark Surman and Jason Diceman, “Choosing Open Source: A decision-making guide for civil
society organizations,” January 2004, Accessed July 23, 2018. https://marksurman.commons.ca/publications/
choosing-open-source-a-decision-making-guide-for-civil-society-organizations/full-text/

Figure 0.1

https://blog.codinghorror.com/the-power-of-view-source/
https://marksurman.commons.ca/publications/choosing-open-source-a-decision-making-guide-for-civil-so
https://marksurman.commons.ca/publications/choosing-open-source-a-decision-making-guide-for-civil-so

203

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 0.2

 Some extensions alter the source in order to obscure web pages, like Rafaël
Rozendaal’s Abstract Browsing (2016) which transfigures all block-level HTML elements
into brightly-colored rectangles reminiscent of a modernist artwork. The extension does
more than make it pretty. It reminds us that the content of the web is mutable, following
Richard Stallman’s decree that software is only useful when it “respects the users’ essential
freedoms.” He says users should have “the freedom to run it, to study and change it, and
to redistribute copies with or without changes.”86This freedom, which Stallman states is a
philosophical matter, like freedom of speech (not free as in beer), is essential in a free and
transparent society - in which we should have access to not only the source of the content
of web pages, but the origins of our food, dealings by our governments, and knowledge of
what happens to our information.

 Ben Grosser’s Facebook Demetricator (2012) hides the barely noticable numbers
that motivate our interactions with others on social media. Grosser’s software removes the
power of the scoring systems that permeate these spaces. He detaches these psychological

8 Richard Stallman, “Why Open Source misses the point of Free Software,” November 18, 2016,
Accessed July 23, 2018. http://www.gnu.org/philosophy/open-source-misses-the-point.html

http://www.abstractbrowsing.net
https://bengrosser.com/projects/facebook-demetricator/
http://www.gnu.org/philosophy/open-source-misses-the-point.html

204

Joelle Dietrick, Gretta Louw, Owen Mundy

Building cross-browser extensions
 In this section we’ll learn to create a cross-browser extension, starting with a
simple “hello world” example, and progressively building up to a working extension that
temporarily explodes a user’s web page whenever it detects a tracker. This tutorial assumes
you have some familiarity with writing code. For example, you know what a variable does.
We’ll start easy and then get more advanced so check out the W3Schools HTML, CSS,
and Javascript tutorials as needed.

 You’ll need three things for this tutorial: a web browser like Chrome or Firefox, a
code editor like Sublime Text or Atom, and the project assets, which can be downloaded
from our Github repository. We’ll be using Chrome and Atom primarily, but will
occasionally explain significant differences in Firefox. Here are some suggestions for
coding this tutorial, and making works for the internet in general:

motivators which urge us to interact, for fear of missing out (because others have already
“liked” it) or because accumulation is unfortunately rewarded more than thoughtful
interaction.

 Another example of an extension that combines utility and experimentation
within the browser is Google Alarm (2010) produced “copyfree” by Jamie Wilkinson and
Greg Leuch with the fffff.at lab. Similar to tracker blockers today, this extension watches
the source code of web pages, but when it finds a reference to a Google-owned tracker,
that code immediately triggers a loud, air horn sound and a siren gif in the browser9.6

Google Alarm is not subtle, yet perhaps that is what we need to alter the course of the
increasingly commercialized and surveilled spaces of the internet.

 Accessing the source code and blocking trackers is also a core mechanic in our
in-production browser game to be released next year. Tally, the name of our game and its
central character, teaches players about hidden data trackers and algorithmic profiling by
awarding users points when they battle and capture hidden “product monsters” (visual
representations of trackers and algorithmic profiling) and blocking those trackers in the
process. Through using industry product marketing categories and gamifying the process
of surveilling users, Tally transforms the entire internet into a game, redefining the power
balance and allowing users to “play” the advertisers, instead of the other way around.

 In the following tutorial, we walk you through the process of creating part of our
game. When users beat product monsters in a turn-based “Pokémon-style” battle, their
reward, in addition to blocking a tracker from that site, is to see the entire web page
“explode”, reminding them that with Tally, they are exercising certain freedoms and doing
their part to deconstruct the surveillance economy. This is easily fixed by reloading the
page, but is a fun, and engaging tactic to - as we have done in a modification here - alert
users they’re being tracked.

9 Gillian Tee, “‘Google Alarm' plug-in tries to wake the world up to privacy issues,” CNN, August 6,
2010, Accessed July 23, 2018. http://www.cnn.com/2010/TECH/web/08/06/google.alarm/index.html

https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://www.w3schools.com/js/
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/
https://www.sublimetext.com/
https://atom.io/
https://github.com/sneakaway-studio/explode-the-web
http://fffff.at/google-alarm/
http://fffff.at/
https://tallygame.net/
http://www.cnn.com/2010/TECH/web/08/06/google.alarm/index.html

205

Joelle Dietrick, Gretta Louw, Owen Mundy

1. File organization is key. Keep your files in folders (a.k.a. “directories”) with descriptive
names. Use version control software (like Git) or a naming convention that helps you
organize your own files.

2. Pay careful attention to code syntax. A misplaced comma or quotation mark can break
your entire project. Use a validator like jsonlint.com to check your code occasionally.

3. Use standard file-naming conventions. The web is case-sensitive, so use capitalization
sparingly and deliberately. Avoid using spaces altogether when creating files for the web.
Substitute spaces with either camelCase, underscores, or hyphens. For example, “Explode
the Web” becomes either explodeTheWeb or explode-the-web.

Part 1: Hello World!

 Most browser extensions are made using HTML, CSS, and Javascript code. They
are installed to the browser either locally (for development and testing) or packaged and
then published on the Chrome Web Store or the Firefox Add-ons page.

 The simplest possible browser extension contains a single manifest.json file, which
specifies only the metadata required to load an extension into the browser. This is how
we’ll start our project. First, download the Github repository and unzip it. Open the
entire directory in Atom by either dragging it to the Atom icon in your dock (on Mac) or
opening Atom first, then choosing File > Add Project Folder… and select the explode-
the-web folder.

Figure 1.0

https://git-scm.com/
https://jsonlint.com/
https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://en.wikipedia.org/wiki/Camel_case
https://developer.chrome.com/extensions/getstarted
https://chrome.google.com/webstore/category/extensions
https://addons.mozilla.org/en-US/firefox/extensions/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.json
https://github.com/omundy/explode-the-web

206

Joelle Dietrick, Gretta Louw, Owen Mundy

Inside this folder you will see the following directories

/extension - Our completed browser extension
/figures - A list of figures for this tutorial
/tutorial - The directory where we’ll do our work

 As you see, the tutorial directory contains a manifest.json file, a folder of assets
that we’ll add to our project, and a sections-complete folder, with completed copies of only
the files we modify in each section. You can refer to these completed copies as needed.

Figure 1.1

 Click on the manifest.json file in Atom (Figure 1.2). A manifest is made using
JSON (JavaScript Object Notation), a hierarchical data format with properties and values
that are readable by both humans and computers. Each property has a key, like “name,”
and a corresponding value, like “Explode the Web!”. Note they are both individually
contained by quotations and the pairs are separated by a comma. Let’s install this
extension in our browser and then add features to it.

Figure 1.2

207

Joelle Dietrick, Gretta Louw, Owen Mundy

To install an in-development extension in Chrome

 1. Navigate to chrome://extensions

 2. Make sure Developer Mode is “on”

 3. Click Load Unpacked, and select the folder that contains the manifest.json file

 4. You should see the extension appear in the list like in this image (Figure 1.3)

Figure 1.3

To install an in-development extension in Firefox

1. Navigate to about:debugging in Firefox

2. Click Load Temporary Add-on and select the manifest.json in the extension directory

3. The extension will now be installed, and will stay so until you restart Firefox.

4. You should see the extension appear in the list like in this image (Figure 1.4)

208

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 1.4

 Now, let’s change the version property from 1.0 to 1.1 and save the file. In Chrome,
return to the chrome://extensions page and note the version has not changed. Normally,
if you are building web pages you would reload the web page in the browser and see your
changes, but that won’t work here. To view changes to an extension you must reload it by
clicking the small reload button at the bottom right. Do that and you will see your version
update to 1.1.

Figure 1.5

209

Joelle Dietrick, Gretta Louw, Owen Mundy

 If you see an error then you should check your syntax. A misplaced or missing
comma or quotation mark is usually the issue. JSON files in particular can be very finicky
about trailing commas and other seemingly inconsequential characters. Feel free to copy
and paste from the example code at any point in this tutorial in case you get stuck.

To recap, this is the workflow, we will repeat as we add to our extension:

 1. Edit the file’s contents in Atom

 2. Return to the browser’s extension page and refresh the extension

 3. Then, refresh a test web page to see your changes.

 Congratulations! You’ve made your first extension and know how to create and
view changes! Now let’s add some features. Create a new file in Atom, in the same directo-
ry as your manifest, called content.js and add the code in Figure 1.6.

Figure 1.6

https://github.com/omundy/explode-the-web/

210

Joelle Dietrick, Gretta Louw, Owen Mundy

 According to the Mozilla Developer Network (MDN) documentation, a content
script is “a part of your extension that runs in the context of a particular web page.” That
is, they run when your users open web pages and can access and change the content of
those pages. The single line of code you added uses a “function” (a collection of code that
can be referenced by a single command) to “log” messages (the content inside the paren-
theses) to the browser’s console. In this case we are displaying a string of text (everything
inside the quotes).

 Next, reference the content.js file in the manifest by adding the new properties in
the code in Figure 1.7. This tells our extension to add content.js to our extension and run
it on every web page, after that page loads.

Figure 1.7

 Save all your files and refresh the extension at chrome://extensions. Then open
a new browser tab, view the console with View > Developer > Javascript Console, and
navigate to a web page. You should see the message we typed above appear in the console.
Nearly every programming language has a feature like the console. Consoles are essential
for debugging and helping to confirm your code is working. Browser consoles also allow
us to examine details about a web page’s code, structure, and performance.

https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Content_scripts
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Content_scripts
https://developer.mozilla.org/en/docs/Tools/Browser_Console

211

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 1.8

Part 2: The Document Object Model (DOM)
 Browser extensions load every time a user loads a new web page, giving them
unique access to that pages’ Document Object Model (or DOM for short). The DOM is
a representation of a web page’s structure, style, and content and provides interfaces for
reading or changing the look or functionality of that page. For example, by accessing the
DOM, an ad blocker extension can compare links in a page to a “filter list” of known ad-
vertisers and prevent parts of a page from being loaded.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

212

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 2.0: How a web page is structured in the DOM

 Now let’s access a part of the DOM and retrieve information from a page. We’ll
do this by interacting with the Javascript Console. At the greater than sign > type window
object and press return. The window property of the DOM includes all the properties and
functions that are available to our code every time a web page loads. Explore the window
using the drop-down triangles to see all the properties and functions it contains.. The
DOM, like JSON objects, is a hierarchically-organized data structure, where child prop-
erties are accessed using a dot. If you want to see the property of a page like the title (the
title property of the document of the window) you can type window.document.title and
press return. For information, see dot notation in the MDN reference.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_accessors

213

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 2.1

 Let’s make use of this in our browser extension. Starting with your code from Part
1, or the finished code inside the /tutorial/1/ folder, we’ll add a Javascript library called
jQuery to make coding easier. A code library is a set of resources written by others that
you can incorporate into your own code to add functionality. We have supplied all the
scripts you need, including this one, in the assets folder you downloaded at assets/libs/
jquery.min.js. Add it to your manifest.json file, just above the line that says content.js.
Make sure to separate the two lines with a comma. Do you know why we add it before we
include the content.js file?

Figure 2.2

https://www.w3schools.com/jquery/

214

Joelle Dietrick, Gretta Louw, Owen Mundy

If you thought that we add the jQuery library before the content.js file so that the func-
tions inside the jQuery library are loaded and available to the code inside content.js then
you are correct!

 The first new function we’ll use in our Javascript code is jQuery’s .text() method,
which can retrieve or set the content of text elements in the DOM. Edit your content.js file
to look like the following. On the first line we store the text content of the page’s title in a
variable, and on the second line we log that information to the console.

Figure 2.3

Save your work, reload the extension, and then browse the web with your Javascript
Console open to see it report the page title on each new page you visit.

Figure 2.4

https://www.w3schools.com/jquery/html_text.asp

215

Joelle Dietrick, Gretta Louw, Owen Mundy

 So far we have learned the basics of making and testing a browser extension, and
how to access data from web pages using the DOM. As we continue we’ll move a little
faster so revisit the W3Schools HTML, CSS, and Javascript tutorials as needed.

Part 3: Tracking the trackers

 In part 3, we’re going to build on what we’ve learned and update our extension to a
basic tracker reporter. If any trackers exist on the page, we’ll display a small message in the
browser to show the user what we found.

 First, let’s update manifest.json to add additional functions to our extension. Add
the following code importing scripts from the assets folder so your manifest looks like
Figure 3.0:

 1. hot-reload.js - A background script that reloads our extension every time we
 save it. This will allow us to skip the step where we click refresh at
 chrome://extensions when we want to test our work.

 2. After the line where we load jQuery in content_scripts, add a reference to
 disconnect-tracking-services.js. This is a list of over 1,800 different web
 domains that trackers connect to in order to secretly collect your data. We’ve
 included a modified version of the list that the excellent Disconnect browser
 extension uses to block trackers.

 3. Next, in content_scripts, add a reference to functions.js, which contains helper
 functions we’ll need in our project.

 4. Finally, add a css property in the manifest to include styles.css to help to make
 our reporting look a little nicer.

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/background
https://github.com/disconnectme/disconnect/blob/master/firefox/content/disconnect.safariextension/opera/chrome/data/services.json
https://github.com/disconnectme/disconnect
https://github.com/disconnectme/disconnect

216

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 3.0

Great, so now we’ll start editing content.js to find and report the trackers. Our pseudo
code, or the program we’ll build in “plain English,” looks like this:

 1. Declare the variables we need to temporarily store data from the page

 2. Loop through all the script tags on the page, comparing their domains (in the
 “src” attribute) to the Disconnect list to see if they are known trackers

 3. Store the list of trackers in a variable

 4. Report the results to the user

Now that we know what we want to accomplish with our code let’s actually write the pro-
gram. First, (Figure 3.1) add a variable that will copy a list of all the script elements on the
page, then another to hold the trackers we find.

https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Pseudocode

217

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 3.1

Now (Figure 3.2) we’ll loop through all the scripts we find (line 8) and see if their src
attribute exists in the Disconnect list (line 14). We are using one of our helper functions
extractRootDomain() to do this. If the src domain matches a known tracker, we’ll log it
to the console (line 15) and store it in the trackersFound array (line 17). An array,
denoted by the square brackets ([...]) is essentially a collection of variables in a list.
Rather than holding one value (like 123 or “hello”), it can hold a list of similar,
comma-seperated values (like 123,456,789).

Figure 3.2

You’ll have to click refresh at chrome://extensions one last time before the hot-reload.
js script starts refreshing your extension automatically. It is also possible you may have to
remove and then reinstall your extension to get hot-reload to work. Go ahead and save
your work and surf around the web with the Javascript console open.

218

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 3.3

As you can see, there are massive amount of trackers out there, each of which is getting
access to your data every time you load a new web page!

219

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 3.4

And, keep in mind that the tracker scripts we have found reveal only a tiny window into
the world of corporate tracking and behavioral targeting.

The data in the network graph in Figure 3.5, gathered by another browser extension and
tracker blocker called Ghostery, shows how trackers we encounter are part of a much
larger network of advertisers, ad markets, and other players intent on manipulating our
actions. Every time your browser loads a web page that contains trackers, even before you
can see the content of a page, information about you is shared throughout these networks.
This naturally increases the time it takes to load a page because many of these services are
not just receiving your data, they’re using it to determine the content of advertisements
that will be shown to you. Further, many of the advertisers in the network are ad markets,
which are holding tiny auctions with other advertisers, who are all, in real time,
estimating the value of more than your attention, but the potential that they can modify
your behavior. Whether the ad service is trying to sell you a car, get you to try a new
service, or change how you do, or do not, vote, this is the economic backbone of the
surveillance economy, made visible by our ability to view the source code of web pages.

https://en.wikipedia.org/wiki/Behavioral_targeting
https://www.ghostery.com/

220

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 3.5

Now let’s add a feature to show users how many trackers are on the page without them
having to have the Javascript console open all the time. In Figure 3.6, wrapped inside an
“if ” statement on line 22 (a block of text that is only executed based on the stated
condition), we make a new HTML element (lines 24–34) that contains the number and a
list of all the trackers. Then we add a click listener with jQuery (line 36) so the list appears
if they choose to click and see it.

https://api.jquery.com/click/

221

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 3.6

Go back and reload the last tracked page you were viewing. You should now see a report
at the bottom of the page that tells you how many trackers there are. Clicking the report
will reveal the names of the trackers’ domains.

Figure 3.7

222

Joelle Dietrick, Gretta Louw, Owen Mundy

Part 4: Explode the web!

This brings us to the final part of our extension-building tutorial, exploding web pages
that have third-party trackers on them. You may have noticed that a lot of web pages have
trackers, so we’ll only explode those pages that have an exorbitant amount of tracking.
Otherwise, thanks to the pervasiveness of behavioral tracking, the internet would be un-
usable!

Let’s start by adding some new features to our manifest.json file. Feel free to begin with
the completed section 3 that we provided.

Figure 4.0

223

Joelle Dietrick, Gretta Louw, Owen Mundy

Here are the details of the changes you see in figure 4.0:

 1. The icons properties (lines 6–10) add an image next to our title on the
 chrome://extensions page (Figure 4.1).

 2. The browser_action (lines 11–18) adds an icon and “popup” menu the user can
 see at the top right of their browser window (Figure 4.2). When they click it it
 will show the contents of this page: assets/pages/popup.html

Figure 4.1

Figure 4.2

 3. We import assets/libs/Anime.js, (line 26) an animation library, to animate the
` “explosion.”

 4. We import assets/js/keys.js (line 29) with code to test our explosion.

 5. We import assets/js/explode.js (line 30) which contains the explodeTheWeb()
 function.

 6. The permissions property (lines 38–42) allows our extension to run on any web
 page.

 7. The web_accessible_resources property (line 43) allows us to reference external files
 at runtime, in this case an image (SVG) and a sound (MP3) of the explosion.

224

Joelle Dietrick, Gretta Louw, Owen Mundy

Check out the file .keydown() function in keys.js (Figure 43.) and you will see the
explodeTheWeb() function we are going to call to explode the page.

Figure 4.3

Next let’s test the “explosion” function using a key press. Save the manifest.json file, reload
your test page, and press the ~ (tilda) key (shift + `) and the e keys simultaneously with
the console open. You should see the page explode and the extension report that it re-
ceived the key press (Figure 4.3).

Figure 4.4

225

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 4.5

Figure 4.6

226

Joelle Dietrick, Gretta Louw, Owen Mundy

Fireworks aside, unless you work in a particular industry, or have seen combat, you’ve
only witnessed fiery explosions as a series of still images—a moving picture. In films, the
visual effect resulting from the chaos of shattered materials and ignited fuel is rendered
by computer code. To simulate this disorder and reorganization of physical materials on
screen, the computer assigns new properties like location, size, rotation, etc. to the indi-
vidual particles. Seen at speed, together, it is the widely popular spectacle that fills in the
gaps where story or dialogue doesn’t.

Your computer’s GUI, or graphical user interface, is also an image. When you browse the
internet, the browser renders an image of the page you visit in the GUI with millions of
pixels. When you move your mouse an image of an arrow moves on the screen corre-
sponding to the X and Y values detected by the hardware. Click a hyperlink on the inter-
net, the computer software is actually detecting the current X and Y position of that arrow
image and sending a message that a click happened in that space to the browser, which
then loads the new page, and another image is rendered with areas
 designated as “clickable.”

Figure 4.7

227

Joelle Dietrick, Gretta Louw, Owen Mundy

Corresponding to how explosions are simulated in films, if you examine the contents of
assets/js/explode.js (Figure 4.10) you will see that our explodeThePage() function:

1. Identifies a collection of HTML nodes (or particles) (line 7)
2. Loops through the HTML nodes and excludes certain classes (like the class for our noti-
fication). (line 13)
3. Then, using the Anime.js animation library, it targets the nodes and changes the rota-
tion, scale (increase and decrease in size), and translation (change in position) properties
of each element to new, randomly determined, values.
4. Finally, we play the explosion.mp3 audio file. (line 46–47)

Figure 4.8

228

Joelle Dietrick, Gretta Louw, Owen Mundy

Voila! An explosion. However, unlike the “pyro-techniques” of a movie explosion, as the
creator of this code, you can keep pressing the test keys to see the page explode and re-ex-
plode as many times as you like. Further, you can connect the explosion to other events,
like the presence of trackers on a page. Let’s do that now.

In content.js add four new variables (Figure 4.9) to the top of the page.

Figure 4.9

Then, add the code in Figures 4.10 and 4.11 to the end of content.js. There’s a lot of code
here so you can copy from the finished file in /tutorial/4 if you want to speed things up.
Everything is commented well so you can read the code to see what is happening in detail.
Here is an overview:

1. Figure 4.9: Add variables to set a limit for the number of trackers allowed, to keep track
of the countdown timer, its limit, and whether or not we’ve already exploded the page
(lines 5–12)
2. Figure 4.10: Then, if the number of trackers is over the limit (line 51) we start a timer
(line 55) and show an icon on the screen (line 57–60) to let the user know we’re going to
explode. We also add a click listener (lines 61–85) so the user can pause, restart, or reset
the page after exploded.
3. Figure 4.11: On line 89 is the function we call every second to update the timer. If it
reaches zero we explode the page. The function on line 110 is to update the tile on the
mouseover so the user knows the status.

229

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 4.10

230

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 4.11

Save your work and surf the web to see this in action!

231

Joelle Dietrick, Gretta Louw, Owen Mundy

Figure 4.12

You can see the bulk of the work in making our extension was writing Javascript code.
And like many coded ideas, ours is just one of many ways it could have been executed.
Now that we’ve shown you how to build a cross-browser extension, you can remix ours, or
come up with a new idea and create your own. Once you do, publish it online and let us
know!

https://chrome.google.com/webstore/detail/explode-the-web/dmedbnfdhjfppcgbccpfaigicbnajhod
https://twitter.com/SneakawayStudio
https://twitter.com/SneakawayStudio

232

Joelle Dietrick, Gretta Louw, Owen Mundy

Conclusion

In conclusion, we’ve seen examples of browser extensions, how they work, and how to
build one. We’ve also learned that trackers are everywhere, but thanks to the open nature
of the web, there are ways to deny them your data. And, as this Explode the Web! exten-
sion, and our new browser game, Tally (due to launch in April 2020!!!) will show, there are
many ways to resist the surveillance economy that are both creative and practical.

References (Chicago)
“Choosing the right filterlist.” Adblock Plus. Accessed July 23, 2018. https://adblockplus.
org/en/getting_started#subscription

Atwood, Jeff. “The Power of ‘View Source’.” Coding Horror (blog). August 17, 2006. Ac-
cessed July 23, 2018. https://blog.codinghorror.com/the-power-of-view-source/

“US Ad Blocking User Penetration, 2014-2018 (% of internet users).” eMarketer. February
22, 2017. Accessed July 23, 2018.
https://www.emarketer.com/Chart/US-Ad-Blocking-User-Penetration-2014-2018-of-in-
ternet-users/204561

Ghostery. 2016. Why #Google AMP Is So Much Faster in Three Dramatic Charts http://
mygho.st/LQ #ghostery #trackermap @adage.
https://twitter.com/Ghostery/status/702935141920993280

Madden, Mary and Lee Rainie. “Americans’ Attitudes About Privacy, Security and Surveil-
lance.” Pew Research Center. May 20, 2015. Accessed July 23, 2018.
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-securi-
ty-and-surveillance/

Stallman, Richard. “Why Open Source misses the point of Free Software.” November 18,
2016. Accessed July 23, 2018. http://www.gnu.org/philosophy/open-source-misses-the-
point.html

Surman, Mark and Jason Diceman. “Choosing Open Source: A decision-making guide for
civil society organizations.” January 2004. Accessed July 23, 2018.
https://marksurman.commons.ca/publications/choosing-open-source-a-decision-mak-
ing-guide-for-civil-society-organizations/full-text/

https://blog.codinghorror.com/the-power-of-view-source/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
https://marksurman.commons.ca/publications/choosing-open-source-a-decision-making-guide-for-civil-society-organizations/full-text/
https://marksurman.commons.ca/publications/choosing-open-source-a-decision-making-guide-for-civil-society-organizations/full-text/

233

Joelle Dietrick, Gretta Louw, Owen Mundy

References (Chicago)

Tee, Gillian. “‘Google Alarm’ plug-in tries to wake the world up to privacy issues.” CNN.
August 6, 2010. Accessed July 23, 2018. http://www.cnn.com/2010/TECH/web/08/06/goo-
gle.alarm/index.html

Turow, Joseph, Michael Hennessey and Nora Draper. “The Tradeoff Fallacy: How Market-
ers Are Misrepresenting American Consumers And Opening Them Up to Exploitation.”
The Annenberg School for Communication at the University of Pennsylvania. June 2015.
Accessed July 23, 2018. https://www.asc.upenn.edu/sites/default/files/TradeoffFallacy_1.
pdf

Voon, Claire. “Cat Art from the Met Museum Makes the Purrfect Browser Plug-in.”
Hyperallergic. July 16, 2015. Accessed July 23, 2018. https://hyperallergic.com/222538/cat-
art-from-the-met-museum-makes-the-purrfect-browser-plug-in/

Additional Recommended Resources Not Referenced in Paper (Chicago)

Singer, Natasha. “Sharing Data, but Not Happily.” New York Times. June 5, 2015. Accessed
July 23, 2018. https://www.nytimes.com/2015/06/05/technology/consumers-conflict-
ed-over-data-mining-policies-report-finds.html

Simanowski, Roberto. “Data Love : The Seduction and Betrayal of Digital Technologies.”
La Vergne: Columbia University Press, 2016.

https://www.nytimes.com/2015/06/05/technology/consumers-conflicted-over-data-mining-policies-report-finds.html
https://www.nytimes.com/2015/06/05/technology/consumers-conflicted-over-data-mining-policies-report-finds.html

